Retinal Vessel Segmentation using Deep Neural Networks

نویسندگان

  • Martina Melinscak
  • Pavle Prentasic
  • Sven Loncaric
چکیده

Automatic segmentation of blood vessels in fundus images is of great importance as eye diseases as well as some systemic diseases cause observable pathologic modifications. It is a binary classification problem: for each pixel we consider two possible classes (vessel or non-vessel). We use a GPU implementation of deep max-pooling convolutional neural networks to segment blood vessels. We test our method on publiclyavailable DRIVE dataset and our results demonstrate the high effectiveness of the deep learning approach. Our method achieves an average accuracy and AUC of 0.9466 and 0.9749, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracting Vessel Centerlines From Retinal Images Using Topographical Properties and Directional Filters

In this paper we consider the problem of blood vessel segmentation in retinal images. After enhancing the retinal image we use green channel of images for segmentation as it provides better discrimination between vessels and background. We consider the negative of retinal green channel image as a topographical surface and extract ridge points on this surface. The points with this property are l...

متن کامل

A multi-scale convolutional neural network for automatic cloud and cloud shadow detection from Gaofen-1 images

The reconstruction of the information contaminated by cloud and cloud shadow is an important step in pre-processing of high-resolution satellite images. The cloud and cloud shadow automatic segmentation could be the first step in the process of reconstructing the information contaminated by cloud and cloud shadow. This stage is a remarkable challenge due to the relatively inefficient performanc...

متن کامل

A Labeling-Free Approach to Supervising Deep Neural Networks for Retinal Blood Vessel Segmentation

Segmenting blood vessels in fundus imaging plays an important role in medical diagnosis. Many algorithms have been proposed. While deep Neural Networks have been attracting enormous attention from computer vision community recent years and several novel works have been done in terms of its application in retinal blood vessel segmentation, most of them are based on supervised learning which requ...

متن کامل

Deep Retinal Image Understanding

This paper presents Deep Retinal Image Understanding (DRIU), a unified framework of retinal image analysis that provides both retinal vessel and optic disc segmentation. We make use of deep Convolutional Neural Networks (CNNs), which have proven revolutionary in other fields of computer vision such as object detection and image classification, and we bring their power to the study of eye fundus...

متن کامل

Deep Learning Neural Network with Semi supervised Segmentation for Predicting Retinal and Cancer Cell Diseased

In medical field, diagnosis of diseases competently carried out by using the image processing. So that to retrieve the relevant data from the amalgamation of resulting image is too difficult. Here the segmentation done by semi supervised learning then the result is tuned by using Deep Learning Neural Network. Higher tuning of results will leads to efficient detection of disease. The experiment ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015